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Summary. An extension of the multiconfigurational SCF approach for the re- 
solution of the vibrational problem is presented; it follows the philosophy of the 
CASSCF method developed in Quantum Chemistry. The new method allows 
a more complete treatment of anharmonic mode couplings, converges much faster 
and gives a clearer physical insight of vibrational interactions. This is exemplified 
by the calculation of infrared transition moments in the H 2 0  and D 2 0  iso- 
topomers of the water molecule. It is shown how this property varies with the 
quality of the wave function when vibrational resonances occur. A detailed analysis 
by means of this new VCASSCF method demonstrates the crucial importance of 
excited bending oscillators in the intensity of some pure stretching transitions. 

Key words: Vibrational structure calculations-Anharmonic couplings-Vibra- 
tional resonances-Infrared intensities-Multiconfigurational methods 

1 Introduction 

A new MCSCF-like method designed for the resolution of the vibrational problem 
has been presented recently [1]. This method is based on the existence of a general- 
ised Brillouin theorem (GBT) for variationally optimised vibrational wave func- 
tions. It has proved to have a more satisfactory behaviour than the classical 
SCF-CI technique in the cases of strong mode coupling. However, like the tradi- 
tional MCSCF method widely used to solve the electronic problem, it has several 
drawbacks: 

• The maximum possible size of the configuration expansions is relatively small in 
MCSCF calculations as compared to MRCI 
• Those configurations have to be selected manually, on the basis of previous CI 
calculations or by physical intuition 
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• There are usually some linear dependencies between the variational conditions 
associated to the CI coefficients and the mode oscillators optimisation (or molecu- 
lar orbitals, in the electronic context) 
• The convergence of the procedure can be slow on some excited states. 

In the electronic context, those problems have been solved by the development of 
the so-called "complete active space" [2] or "fully optimised reaction space" [3] 
approach, referred to as the CASSCF or FORSSCF methods in Quantum Chem- 
istry. It consists in a particular choice of MC configurations (i.e. the configurations 
included in the multiconfigurational wave function). Those are obtained by allow- 
ing every possible excitation in a limited set of orbitals which forms the so-called 
"active-space". The set of configurations selected corresponds to a full CI in this 
subspace. The MC wave function built in that way has a very interesting property; 
it is invariant to any unitary transformation within the active subset, as any full CI 
wave function should be. This property limits the number of variational conditions 
applicable on the molecular orbitals (or mode oscillators) to rotations between 
active and unoccupied orbitals (or oscillators), the rotations within the active set 
being redundant with the CI coefficient optimisation. 

This paper aims to show how this technique, which proved very successful in 
Quantum Chemistry, can be applied in the vibrational context. Another aspect of 
this work is to demonstrate the efficiency of this approach in the interpretation of 
mode couplings and of their great influence on IR intensities. Those two points will 
be treated in the case of the water molecule, where a large set of experimental and 
theoretical data is available. 

This paper is separated into two main sections: the first one describes the 
vibrational CASSCF formalism and its implementation in our VMCSCF algo- 
rithm; the second is devoted to the application to H20 and D20. 

2 The vibrational CASSCF method (VCASSCF) 

The vibrational MCSCF method presented in [-1] was based on the generalised 
Brillouin theorem and used a variation of the super-CI algorithm of Grein and 
Chang [4]. In order to explain how this procedure can be adapted towards 
a CASSCF-like optimisation, let us recall the expression of the GBT and the main 
steps of the MCSCF algorithm which are all preserved, if slightly modified. The 
reader is sent back to [-1] for further details of the procedure. 

2.1 The vibrational generalised Brillouin theorem 

Let us write the multiconfigurational wave function that we wish to optimise: 

7%Me = ~ Ci 711, (1) 
i 

where ~i represents a vibrational configuration and ci a configuration interaction 
coefficient. 7Ji is a simple product of mode oscillators: 

3 N - 6  

I-[ (2) 
v = l  
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where ¢~ is the uth vibrational coordinate and q~(¢~) is the corresponding anhar- 
monic oscillator of quantum number k. ¢7,(~) can be developed on a basis set: 

p 

= do, (3) 
a = O  

where f2,(~v) is a primitive basis function. As discussed for instance in [5], different 
kinds of primitive one-mode functions can be chosen. In any case, the d,,k are the 
only variational parameters associated with the oscillators basis set. 

When the MC wave function (1) is fully optimised with regard to both {ci} and 
{dak}, it complies with the generalised Brillouin theorem. The latter states that all 
Hamiltonian matrix elements taken between the MC function and its single 
excitations are zero: 

( ~VMC/Hvib[ T~t} : O. (4) 

7%, which denotes a single excitation, is a multiconfigurational function defined as 

T~,, = ~ c,( T, (v; k ~ l) - -  V i  (v; l  ~ k)) .  (5) 
i 

The notation Ti(v; k ~ I) refers to the function obtained by replacing the oscillator 
of quantum number k by the oscillator of quantum number l, on the mode v in the 
configuration Ti. The structure and symmetry of the Brillouin single excitations 
have been detailed elsewhere [1]. This theorem implies that there is no mixing 
between the MC function and any of its single excitations. 

2.2 The VMCSCF optimisation algorithm 

Let us first review the successive steps required by the procedure to force a trial 
function to obey the GBT (i.e. be self-consistent): 

1. Determination of an initial guess for the oscillators basis set {¢i}. This is usually 
done by a VSCF calculation on one of the MC configurations or by a previous 
VMCSCF calculation. 
2. Resolution of the CI problem associated to the configurations of the reference 
function TVMC (MC space). 
3. Build-up of the single excitations satisfying the BrilIouin theorem. It consists in 
forming all the single excitations (5). A canonical orthonormalisafion is applied in 
order to eliminate linear dependencies. 
4. Build-up of the Hamiltonian matrix in the basis Set formed by the reference and the 
single excitations (SX space). 
5. DiagonaIisation of the matrix defined at step 4. The eigenfunction having a dom- 
inant coefficient on the MC function is selected; it can be written as 

3 N - 6  p p 

V ESX : aoo VVMC + Z Z Z ak, V[,. (6) 
v = l  k = O  l = O  

l # k  

6. Transformation of the oscillators basis set. This transformation is done in order 
to incorporate the effect of the single excitations in the reference MC function. It is 
performed according to the following equation, where the oscillators at iteration 
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N + 1 are expressed as a linear combination of the oscillators at iteration N: 

P 
~(¢~)tN+I] = a~,k¢~(~)tNJ + ~ a~d¢~(¢~)tN~, (7) 

/=0, l ~ k  

where the {akt } are fully defined by Eq. (6) plus two relations of norm and ortho- 
gonality [1]. 
7. Resolution of the CI problem associated to the configurations of TvMc. This step is 
equivalent to step 2 except that the configurations are built on the new oscillators 
basis set defined at step 6. 
8. Back to step 4 and iteration until convergence. 

2.3 The CASSCF philosophy in the vibrational context 

As said earlier, the CASSCF approach consists in a particular choice of vibrational 
configurations; those are taken by performing every possible excitation in a limited 
oscillators space. This undermines a partition of the mode oscillators basis set in 
two subspaces: the active set and the virtual set. The active space includes a series of 
oscillators of quantum number v starting from 0 up to a user fixed value, which can 
vary from mode to mode. The virtual set contains the rest of them up to the highest 
energy oscillators, no "core" oscillators have been defined in our implementation. 

It has been shown [2] that, within the active space, the Brillouin theorem is 
systematically verified, whatever the oscillators basis set. That is, 

(~gVMc/Hvibl ~act/aet ) = 0 ,  (8) 

where kact and/act are active oscillators. 
The single excitations within the active subspace must no longer be taken into 

account; they would only create redundancies with the variational conditions 
associated with the CI coefficients optimisation. The only relevant Brillouin condi- 
tions are associated with the single excitations from an occupied (active) to a virtual 
oscillator as 

( WVMCIHvibl ~[a~l~ir,) = 0. (9) 

The single excitation T[a~,lvir , is, furthermore, simpler to create since there is no 
reverse excitation to consider; we can then equate T~,ao, lvirt to the direct excitation 
T,(v; k~t ~ lvirt). 

The partition of the oscillators basis set in two distinct subspaces is directly 
reflected in the algorithm: the CI coefficient optimisation is only concerned with 
the active set and the oscillators optimisation deals only with the virtual set, as 
summarised in Table 1. This sharp separation between the MC and SX problems 
prevents any linear dependency that could occur between the variational condi- 
tions associated with both sets of coefficients. 

2.4 Details o f  implementation 

The algorithm is simplified in two ways: there are fewer single excitations to 
consider and the remaining ones are simpler. Those modifications are straightfor- 
ward to implement; one only needs to restrain the single excitations to the virtual 
space and remove the reverse excitation of them. The manual generation of the MC 
configurations has also to be replaced by a systematic procedure. The algorithm is 
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Table 1. Relations between oscillators subspaces and optimisation steps 
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Oscillators Optimisation step Operation performed 
subspace 

Active space 

Virtual space 

MC problem: optimisation of the 
MC coefficients 

SX problem: Optimisation of the 
oscillators basis set 

Full CI in the active set 

Rotation between active and 
virtual oscillators 

made much more efficient and allows to include many more configurations in the 
calculation. This gives a greater variational flexibility to the wave function and, 
along with the absence of linear dependencies, allows a much faster convergence. 

The possibility of a state average optimisation, which was already present in 
the original program [1], has been preserved in the CASSCF version. It allows to 
optimise the oscillators basis set for the average of several states and has the 
advantage to give a balanced and orthogonal representation of these states, 
although the averaging imposes a constraint on the wave function, which is no 
longer fully variational. This option is also very useful when the convergence of the 
procedure is marred by root  flipping problems between closely interacting states. 

Our new algorithm has been implemented in the same context as before [1], but 
the potential energy expansion includes higher-order contributions. We use the 
Watson ['6] Hamiltonian developed in normal coordinates, the inertia matrix has 
a fixed value, the development of the potential is limited to the sixth-order and the 
oscillators are expressed as linear combination of harmonic oscillators. 

2.5 The convergence of the CASSCF procedure 

The convergence of the procedure has been tested on two vibrational states of 
the ground electronic state of the water molecule, denoted 200 and 002, which 
correspond to the first overtones of the symmetric and antisymmetric stretch, 
respectively. Those states interact strongly through a Darling-Dennisson reson- 
ance. This particular system has been studied before [-1, 7] at the VSCF, VSCF-CI 
and VMCSCF levels. The 002 state was found very difficult to represent properly: 
the VSCF optimisation on this state led to an inversion of the 200 and 002 states 
position. This inconsistent behaviour could only be compensated for by the 
inclusion of a large number of configurations in a subsequent CI calculation. In this 
case a VSCF optimised basis set is certainly not a good initial guess for a VMCSCF 
optimisation. Furthermore,  with a minimal set of configurations (the lowest-lying 
11 configurations of al symmetry plus the 102 one), it has been impossible to 
optimise separately the 002 by an ordinary VMCSCF procedure; only the average 
of the two states could be obtained, no matter how carefully the initial guess was 
prepared. The convergence on these states, especially the 002, starting from the 
corresponding VSCF oscillators is thus a severe test of the procedure. It has been 
performed [-1], on both interacting states separately at the VCASSCF level, with 
a basis set of 10 oscillators per mode. We have used for this test an ab initio 
potential energy surface, calculated at a better level of theory (VQZ/MR-CI) than 
the one adopted in our previous work [1,7] (TZ + 2P/SD-CI). This surface, 
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Fig. 1. Convergence of the 
VCASSCF procedure, applied 
without state averaging, on the 
200 and 002 vibrational states of 
water 

calculated in this work in order to investigate the influence of the quality of the 
vibrational wave functions on infrared intensities, will be detailed in Sect. 3.1.1. 

The active space is defined by the following vibrational quantum numbers: 

on the symmetric stretching: 
on the antisymmetric stretching: 
on the bending: 

v = 0-3, 
v = 0-4, 
v = 0-2. 

Taking account of the symmetry, these criteria generate a set of 36 configurations. 
The results of this calculation are plotted in Fig. 1 and shows a quasi-perfect 

convergence after four iterations (0.4 cm-  1 on average). Let us note that, in the case 
of the optimisation on the 002 state, the two states are inverted from the VSCF 
solution to get back to their real position. This explains the surprising shape of the 
plot which rises sharply and stabilises smoothly afterwards. 

3 Application to H20 and D20 

It has been shown in a previous study [7-1 that the calculation of dipole moment 
matrix elements is extremely sensitive to the oscillators basis set optimisation, 
particularly in the cases of vibrational resonances. Off-diagonal (transition) ele- 
ments are particularly important  in vibrational spectroscopy, since they are dir- 
ectly related to infrared transition intensities. The present work aims to study 
the nature of the vibrational interactions occurring in a particular system and to 
evaluate their relative importance for the computation of some vibrational 
transition moments. 

The system studied here is the transition from the ground state to the first 
overtone of the antisymmetric stretch in H 2 0  and D 2 0  (000 ~ 002), completed by 
the first corresponding hot band transition (010 ~ 012) for the H 2 0  isotopomers. 
The 010 --* 012 transition was not computed for D20,  because it appeared to be too 
small, around 10 -6 D, to be evaluated precisely. The four transitions mentioned 
here are in some way equivalent, as the final states are affected by the same 
Darling-Dennisson resonance between the first overtones of the two stretchings. 
Since from H 2 0  to D 2 0  the frequencies are all divided by the same factor (21/2), 
one expects the same vibrational interactions in both isotopomers. One could also 
expect similar transition moments for the cold and the hot bands, if the vibrational 
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interactions occurring in the region of the 012 state correspond to those acting 
around the 002 state. 

We will try to demonstrate hereafter that an appropriate variational optimisa- 
tion, like the one obtained from the VCASSCF method, can bring quantitative 
information on the relative importance of mode couplings and put such hypotheses 
into question. 

3.1 Computational details 

3.1.1 Potential energy and dipole moment surfaces. Both surfaces were computed 
by numerical derivation at the CASSCFflC-MRCI level 1,8-11] using the 
MOLPRO 1,12] package. The basis set is Dunning's standard correlation consis- 
tent VQZ [13], in which theffunction on the hydrogen as well as the g function on 
the oxygen have been eliminated, while some diffuse s and p functions were added 
in order to get a good value of the dipole moment (one s and one p with a 0.094 
exponent on the oxygen and one s with a 0.054 exponent on the hydrogen). 

The active set used in the CASSCF calculations includes all the core and 
valence electrons. The importance of the core orbitals into the active space has 
been demonstrated by preliminary test calculations; these show indeed that limit- 
ing the electron correlation to the valence shells only induces a deviation of 
95 cm- 1 of the antisymmetric stretch harmonic frequency. The influence of the 
core-valence correlation effects on the harmonic force field has been reported 
recently on diatomic species 1,14]. 

The MRCI configurational set was built on the complete CASSCF reference, 
respectively leading to 66000 and 131000 contracted CSFs 1, for C2v and Cs 
geometries. We included the Davidson correction to compute the potential energy 
surface. The calculations were performed on a grid of 35 points defined by 
Rosenberg et al. [15]. 

The potential surface was fitted to a fourth-order SPF 1,16] expansion in 
valence coordinates and transformed to a sixth-order normal coordinate expansion 
using the SURVIB 1,17] program. The harmonic frequencies were slightly adjusted 
to reproduce the experimental values of the fundamental frequencies at our best 
level of approximation, i.e. FCI(500) (see Sect. 3.1.2). The electric dipole moment 
vectors, computed on each point of the grid, were rotated to the Eckart axis system, 
according to Le Sueur et al. 1,18]; they were then expanded to a third-order 
expansion in valence coordinates and transformed to a third-order normal coordi- 
nates expansion. 

The total energy and dipole moment values, calculated at the grid points, are 
listed in Table 2 and the corresponding potential energy and dipole moment 
functions are given in Table 3. The values of the pure ab initio and adjusted 
harmonic frequencies are compared to experimental values I-19, 20] in Table 4. This 
comparison shows that the adjustment is relatively small and leads to harmonic 
frequencies close to those obtained from a fit to experimental data, proving the 
good consistency of our model. Other calculated properties (equilibrium geometry 
and value of the dipole moment at this geometry) characterising the quality of the 
ab initio surfaces are compared to experimental values 1,21, 22] in Table 5. 

1 These numbers respectively correspond to 1.137 and 2.271 millions of uncontracted configurations 
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Table 2. Potential energy and dipole moment surfaces computed at the VQZ/IC-MRCI level 

Ron, Ron 2 HOH E" #b p b 
(Bohr) (Bohr) (deg) (Hartree) (Debye) (Debye) 

1.7509599 1.7509599 101.449 -0.3822722 1.908036 0 
1.7509599 1.7509599 104.449 -0.3826671 1.866119 0 
1.7509599 1.8109599 104.449 -0.3835914 1.873902 -0.024996 
1.7590599 1.8409599 104.449 -0.3832974 1.877547 -0.036947 
1.7509599 1.7509599 107.449 -0.3826035 1.822609 0 
1.7809599 1.7809599 98.449 -0.3830894 1.956676 0 
1.7809599 1.7809599 101.449 -0.3838515 1.916054 0 
1.7809599 1.8109599 101.449 -0.3841010 1.919821 -0.011625 
1.7809599 1.7809599 104.449 -0.3841387 1.873883 0 
1.7809599 1.8109599 104.449 -0.3843353 1.877658 -0.017329 
1.7809599 1.7809599 107.449 -0.3839740 1.830115 0 
1.7809599 1.8109599 107.449 --0.3841213 1.833634 -0.01306 
1.7809599 1.7809599 110.449 -0.3833822 1.784641 0 
1.8109599 1.8109599 98.449 -0.3837037 1.964308 0 
1.8109599 1.8109599 101.449 -0.3843545 1.923402 0 
1.8109599 1.8109599 104.449 -0.3845375 1.881005 0 
1.8109599 1.8109599 107.449 -0.3842755 1.836969 0 
1.8109599 1.8109599 110.449 -0.3835921 1.791224 0 
1.8409599 1.8409599 98.449 -0.3833517 1.971247 0 
1.8409599 1.7809599 101.449 -0.3838651 1.923408 0.022870 
1.8409599 1.8109599 101.449 -0.3841227 1.926828 0.011238 
1.8409599 1.8409599 101.449 -0.3838950 1.930098 0 
1.8409599 1.7809599 104.449 -0.3840469 1.881004 0.024256 
1.8409599 1.8109599 104.449 -0.3842548 1.884308 0.011933 
1.8409599 1.8409599 104.449 -0.3839777 1.887440 0 
1.8409599 1.7809599 107.449 -0.3837838 1.836991 0.025744 
1.8409599 1.8109599 107.449 -0.3839450 1.840143 0.012679 
1.8409599 1.8409599 107.449 -0.3836218 1.843136 0 
1.8409599 1.8409599 110.449 -0.3828501 1.797127 0 
1.8709599 1.8709599 101.449 -0.3825761 1.936077 0 
1.8709599 1.7509599 104.449 -0.3825696 1.881004 0.048500 
1.8709599 1.7809599 104.449 -0.3833248 1.884293 0.035792 
1.8709599 1.8109599 104.449 -0.3835384 1.887421 0.023458 
1.8709599 1.8709599 104.449 -0.3825623 1.893116 0 
1.8709599 1.8709599 107.449 -0.3821162 1.848572 0 

a Energies given as ( - 76 + E) Hartrees, Davidson correction for quadruple excitations included 
b Rotated to the Eckart axes 

3.1.2 Resolution of  the vibrational problem. Different levels of approx imat ion  have 
been used. All of them are developed in the same f ramework (mainly use of  the 
Wat son  H a m i l t o n i a n  [6], s ix th-order  potent ia l  and L C H O  expansion) and vary 
only by the degree at which m o d e  couplings are taken into account,  directly or 
indirectly. By direct coupling, we mean  that  some configurat ions implying excita- 
t ions on the coupled  oscil lators are explicitly involved in an M C S C F  or CI  step. 
By indirect coupling, we mean  tha t  some mode  oscillators are opt imised in the 
mean  field genera ted  by the others, wi thout  any crossed interact ion between the 
two sets. 
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Table  3. V Q Z / I C - M R C I  qua r t i c  force field in in te rna l  coord ina tes  (SPF for bond  stretches) and  

adjus ted  sextic  force field in n o r m a l  coordinates .  The  uni ts  are consis tent  with: energies in Hartrees ,  

d is tances  in a t o m i c  units,  angles  in r ad ians  and  norma l  coord ina tes  in a tomic  uni ts  

C o n s t a n t  a In te rna l  N o r m a l  Cons t an t  a N o r m a l  

coord ina te s  coord ina tes  coord ina tes  

k l l  8.89421E - 01 1.52209E - 04 k l l l U  4.92465E - 10 

k12 - 1.99603E - 02 k l l t a 2  2.12330E - 10 

kl3 5.73514E - 02 k i l l / /  - 1.19825E - 09 
kzz 8.89421E - 01 2.82568E - 05 k l u 3 3  5.21275E - 09 

k23 5.73514E - 02 kl1222 - 3.96129E - 10 

k33 8.16337E - 02 1.61206E - -  0 4  k11233 1.60191E - 09 
k i l l  - 2.06796E - 01 3.23031E - 06 klzz22 1.26795E - 10 

k i t 2  - 2.90453E - 02 2.77819E - 07 k12233 --  4.24438E - 09 

k113 4.59644E - -  0 2  k l 3 3 3 3  2.72045E - 09 
ktz2 - 2.90453E -- 02 - 6.88512E - 07 kazz2z 3.27348E - 11 

k123 - -  1.04946E -- 01 k22233 - -  4.48577E - 10 
k133 - 3.61491E - 02 9.95319E - -  06  k23333 3.59134E - 10 
k222 - 2.06796E - 01 - 1.32786E - 07 k l l l l U  4.16858E - 12 

k223 4.59644E - 02 klxllla 3.45567E - 12 
k233 - 3.61491E - 02 9.62297E - 07 kllllz2 - 2.17596E - 11 

k333 - 2.68715E -- 02 k111133 7.04857E -- 11 

k l  11 t - 2.98508E - 01 4.50872E - 08 k l  x 1222 - 1.05850E - 11 

k l i l z  - 4.72153E - 02 9.97846E - 09 kl11233 3.32428E -- 11 
kl  113 1.90195E - 02 kl12222 7.71859E - 12 

k1122 -- 1.97480E - 02 - 4.58071E - 08 k112233 - -  1.53777E -- I0  

k1123 - -  1 . 0 1 5 1 1 E -  01 k113333 7 . 4 7 6 6 6 E -  11 
k1133 - -  4.80406E -- 02 2.79299E - 07 k122222 2.71611E - 12 

k1222 - 4.72153E - 02 - 1.03448E - 08 k122233 - 3.22211E - 11 

k1223 - -  1.01511E - 0 1  k l 2 3 3 3 3  2.22699E - 11 

k1233 7.33028E - 02 5.32921E - 08 kz22222 - 1.95017E -- 14 

k1333 2.63499E - 02 k222233 1.16679E - 11 

k2222 - 2.98508E -- 01 -- 7.19058E -- 10 k223333 - -  2.66521E - 11 

k2223 1.90195E - 02 k333333 5.19435E -- 12 

k2233 - 4.80406E - 02 - 5.77159E - 08 

k2333 2.63499E - 02 

k3333 - -  6.60474E -- 03 4.82321E -- 08 

a Fo r  in te rna l  coordina tes ,  indices  1,2 and  3, respectively, refer to the SPF  coord ina tes  of bo th  O H  

st re tches  a n d  to  the  H O H  angle;  for n o r m a l  coord ina tes  they refer to the symmet r ic  stretch, the bend ing  

and  an t i symmet r i c  s t re tch  n o r m a l  coord in tes  

T h e  V C A S S C F  m e t h o d  a l l o w s  t o  m i x  b o t h  k i n d s  o f  c o u p l i n g :  b y  d e c l a r i n g  

s o m e  o s c i l l a t o r s  a c t i v e  i n  a s e r i e s  o f " a c t i v e "  m o d e s  a n d  r e s t r a i n i n g  t h e  o c c u p a t i o n  

o n  t h e  o t h e r  m o d e s  t o  t h e  f u n d a m e n t a l  o s c i l l a t o r ,  o n e  a l l o w s  a d i r e c t  r e p r e s e n t a -  

t i o n  o f  t h e  c o u p l i n g  b e t w e e n  t h e  a c t i v e  m o d e s ,  a n d  a n  i n d i r e c t  r e p r e s e n t a t i o n  o f  t h e  

c o u p l i n g  b e t w e e n  a c t i v e  a n d  i n a c t i v e  m o d e s .  O f  c o u r s e ,  t h e  i n t e r a c t i o n s  b e t w e e n  

t h e  i n a c t i v e  m o d e s  a r e  a l s o  i n d i r e c t .  

F u r t h e r m o r e ,  t h e  s e p a r a t i o n  i s  v e r y  s h a r p ;  a l l  t h e  p o s s i b l e  d i r e c t  c o u p l i n g s  a r e  

i n c l u d e d  i n  t h e  a c t i v e  s p a c e ,  b u t  a l l  t h e  o t h e r  i n t e r a c t i o n s  a r e  r e p r e s e n t e d  i n  a n  

e f f e c t i v e  w a y ,  a l t h o u g h  s t i l l  i n  a f u l l y  v a r i a t i o n a l  s c h e m e .  T h e s e  f e a t u r e s  w i l l  b e  

e x p l o i t e d  a s  a t o o l  f o r  a n a l y s i n g  s t r e t c h - b e n d  i n t e r a c t i o n s  i n  H z O  a n d  D 2 0 .  T h e  
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Table 4. Harmonic frequencies of H20 and D20(cm -1) 

Frequency Ab initio Adjusted Exp." 

(01 3837.8 3834.4 3832.2 
(02 166 I. t 1649.4 1648.5 
(03 3944.4 3945.1 3942.5 

D20 
(01 2766.7 2765.0 2762.8 
(02 1215.7 1202.0 1206.4 
(03 2889.8 2886.0 2888.8 

a Reference [19] for H20; Ref. [20] for D20 

Table 5. Equilibrium properties of the ground elec- 
tronic state of water 

Property Ab initio Exp. 

Ronx (A) 0.9568 0.9578 ~ 
Ron 2 (~,) 0.9568 0.9578" 

HOH(deg) 104.22 104.48 a 
/~ (D) 1.884 1.855 b 

Reference [21] 
b Reference [22] 

following levels of calculation will be considered to achieve this purpose: 

• complete neglect of mode coupling 
• effective representation of mode coupling 
• direct representation of stretching mode 

interactions and effective representation of the 
coupling with the bending mode 

• direct representation of stretching mode 
interactions and direct representation of the 
coupling with the bending mode, up to various 
energy levels 

• direct, but not fully variational, representation 
of all modes interactions 

• reference, exact variational limit of the basis set 

UAO 2 
VSCF 
VCASSCF(12) 

VCASSCF(24) to 
VCASSCF(84) 

CI(92) 

FCI(500) 

The notation VCASSCF(m) or CI(m) indicates the size m of the configuration 
space actually used in the variational calculation. All the CASSCF wave functions 
are optimised for the average of the two states implied in the transition, in order to 
get a pair of or thogonal  wave functions, which is not the case in a VSCF 
optimisation. The active spaces contain in all cases the oscillators of quantum 
numbers 0-3  on the symmetric stretching and 0 - 4  on the antisymmetric stretching. 
They only differ by the upper limits on the bending oscillators, the lower limit being 
always fixed to 0. Upper  limits of 0, 1, 2, 3 and 6, respectively, lead to CASSCF 

2 For uncoupled anharmonic oscillators, as defined in [23] 
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configuration sizes of 12, 24, 36, 48 and 84. In all cases the oscillators basis set has 
been limited to 10 harmonic oscillators per mode. 

The CI(92) refers to a selection of the configurations on the following criteria: 
all excitations are considered up to v = 4 on the two stretching modes and up to 
v = 6 on the bending, every possible combination being taken as long as the sum 
of all vibrational quantum numbers is not greater than 10. The FCI(500) wave 
function corresponds to a full CI  in a 10 oscillators per mode basis set; it is 
converged [7"1 with respect to both oscillators and configurations basis sets and will 
therefore serve here as reference level of calculation. 

The notat ion VCASSCF(m)/CI(n)  will be used below; it refers to a two-step 
variational procedure in which a CI(n) is performed using an oscillators basis set 
optimised in a previous VCASSCF(m) calculation. 

3.2 Vibrational energies 

The vibrational energies corresponding to all vibrational states featuring a sum of 
quantum numbers of 2 or less ( l l  states) are listed in Table 6 for the two 
isotopomers. These were computed using the best converged vibrational calcu- 
lation (FCI(500)) in the potential surfaces described above. The adjustment on the 
fundamental bands gives a consistent improvement  of the results for all states, with 
an average discrepancy with respect to experiment [24], going from 12 to 3 c m -  1 
on H20 .  This justifies the choice of evaluating the harmonic part  of the potential 
empirically, taking account of an ab initio determination of the anharmonic part. 
This latter level of approximation should give a good description of the corres- 
ponding vibrational wave functions and will therefore be used systematically for 

Table 6. Vibrational transition energies of HzO and D20 cal- 
culated using different potential energy surfaces 

State Ab initio Adjusted Exp? 

HzO 
010 1607 1596 1595 
020 3178 3155 3151 
100 3662 3657 3657 
11 0 5250 5233 5253 
200 7218 7207 7201 
002 7449 7446 7445 

001 3756 3755 3756 
011 5341 5328 5331 
101 7265 7258 7250 

DzO 
010 1194 1179 
020 2368 2339 
100 2675 2672 2672 
110 3859 3842 
200 5299 5294 5292 
002 5542 5533 

001 2793 2789 2788 
011 3988 3969 3956 
101 5385 5377 5374 

"Reference [24] for H20; Ref. [20] for D20 
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the calculation of transition moments. The set of experimental data available 1-20] 
on DeO does not allow a complete comparison but it is clear that this heavier 
system is less anharmonic and is easier to represent. 

3.3 Transition dipole moments 

3.3.1 Analysis of transition moments. Among the transition moments  calculated 
earlier I-7-1 using TZ + 2P/SD-CI  surfaces, the one corresponding to the 000 ~ 002 
transition was poorly estimated to one-third of the experimental value. The reason 
for this comes out if one analyses the contribution of the different terms in the 
dipole moment  expansion. 

Let us write the transition dipole moment  matrix element between two ortho- 
gonal state functions 17'v) and I ~v ' )  as 

3n - 6 t~Tt 3n - 6 3n - 6 ~2~ 
- X ~=a ~ OQ, OQ~ <7"~IQiQjlT'~'> 

3n-63n-63n-6 93- 

where ~ is the dipole moment  surface, Q~ is the ith normal coordinate and the 
derivatives of ~ are calculated at the equilibrium geometry. 

If we evaluate the different orders contribution, as in Table 7, we see that  the 
sum of the second- and third-order contributions is of the same order of magnitude 
as the first-order term but of opposite sign. The final value will then be extremely 
sensitive to the value of the different contributions. In particular, mode coupling 
could have a great influence on the relative value of the different terms. The 
comparison of the different methods used to compute the dipole moments  should 
enable us to determine the relative importance of the various possible interactions. 

The efficiency of the computat ional  method is not only measured by its ability 
to give a converged value of the dipole moment.  As one hopes to concentrate 
a maximum of information on the wave function in a minimal set of configurations 
by variationally optimising the oscillators, a good way of measuring the compact-  
ness of the wave function is to evaluate how many configurations contribute 
significantly (to 1%, at least) to the total value of the dipole moment.  If we express 
the vibrational g t  wave function as a multiconfigurational expansion, 

g*~ = ~ c[ ~g~, (11) 
i 

Table 7. Relative importance of the different orders terms in the diple moment expansion for the 
calculation of transition moments in H20 a (10 -2 D) 

Transition First-order Second-order  Third-order Total value Exp. b 
contribution con t r ibu t ion  contribution (ab initio) 

000~002 -0.1351 0.1996 -0.00656 0.06379 0.10 
010~012 0.1116 -0.2183 0.01652 0.09020 

a Level of calculation VQZ/IC-MRCI for both potential and dipole moment surfaces and FCI (500) for 
the vibrational problem 
b See Ref. 1-24] 
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where the {c~} are the CI coefficients and the { ~ }  represent the configurations set, 
the transition moment (10) can be rewritten as 

V V' ~ - v '  ~,~, = ~ c ~ c j < ' e , l ~ l ~ e j  >. (12) 
i j 

This latter expression decomposes the transition moment to a sum of such 
contributions of pairs of configurations. If the two wave functions are efficiently 
optimised, the total dipole moment should be distributed on a relatively small 
number of contributions. If not, a large number of contributions will be required, 
making the important terms harder to spot. 

3.3.2 Results and discussion. The transition dipole moments calculated at the 
various levels of approximation described in Sect. 3.1.2 are listed in Table 8. The 
number of pairs of configurations (see Eq. (12)) that contribute for at least 1% of 
the total value of the transition moment are also reported. 

Let us first compare the UAO and VSCF values to the reference FCI(500) 
calculation. Although the UAO values are on average twice as large as the FCI 
ones, they should be regarded as much better than the VSCF ones, which are 
typically two orders of magnitude too large. The reason for this is the non- 
orthogonality of the two VSCF wave functions implied in the transition. Indeed, 
the large value of the permanent dipole moment in water (/A = 1.884 D) generates 
an important unphysical 0th-order contribution (Pe(~Pv[ ~ ' )  to the total dipole 
transition moment. 

Table 8. Effect of mode couplings on the computation of transition moments 
(10 - 2  D); the numbers in parentheses correspond to the pairs of configurations (see 
Eq.  (12)) that contribute for at least 1% of the total value of the transition moment 

Method Transition 000 ~ 002  T r a n s i t i o n  010  --* 012  

H 2 0  
U A O  4.56E - 02  3 .86E - 02 

V S C F  5.26 6.47 

V S C F / C I ( 9 2 )  6 .08E - 02 (159) 7 .69E - 0.2 (303) 

V C A S S C F ( 1 2 )  8 .80E - 02 (22) 

V C A S S C F ( 2 4 )  1.85E - 02  (62) 6 .86E - 02 (61) 

V C A S S C F ( 3 6 )  6:40E - 02 (65) 8 .62E - 02 (74) 

V C A S S C F ( 4 8 )  6 .32E - 02 (65) 8 .04E - 02 (105) 

V C A S S C F ( 8 4 )  6 .36E - 02 (65) 9 .21E - 02 (109) 

V C A S S C F ( 3 6 ) / C I ( 9 2 )  6 .48E --  02 (95) 9 .30E --  02 (192) 

F C I  (500) 6 .38E --  02 9 .03E --  02 

D 2 0  
U A O  5.38E - -  02 

V S C F  4.22 

V S C F / C I ( 9 2 )  1.71E --  02  

V C A S S C F ( 1 2 )  1.36E - 02 

V C A S S C F ( 2 4 )  4 .09E - 02 

V C A S S C F  (36) 1.40E --  02 

V C A S S C F ( 4 8 )  1.40E --  02 

V C A S S C F ( 8 4 )  1.38E --  02 

V C A S S C F ( 3 6 ) / C I ( 9 2 )  1.37E --  02 

FCI (500)  1.38E --  02 

(166) 
(32) 
(43) 
(75) 
(77) 
(80) 

(133) 
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The large discrepancies observed between the UAO and FCI(500) values clearly 
indicate the importance of mode couplings for such a calculation in all cases. 

Let us now focus on the H20 isotopomer and first on the 000 ~ 002 transition. 
The complete neglect of direct coupling with the bending mode (VCASSCF (12)) 
seems to give reasonable results, only 30% larger than the FCI reference value. 
However this looks fortuitous since the inclusion of the first excited bending 
oscillator in the active space (VCASSCF(24)) worsens this result; one has to include 
a further excited bending oscillator to see the dipole moment converge to 
the reference value. The comparison between the VCASSCF involving 36, 48, 84 
configurations and the VSCF/CI(92) methods shows that the VCASSCF gives 
a much better result with more restricted CI expansions. This is particularly 
striking if one considers the number of pairs of configurations contributing 
significantly to the total dipole moment, the VSCF/CI calculation requires more 
than twice as many contributions. The comparison between the VCASSC(36) 
/CI(92) and VSCF/CI(92) calculations seems the fairest since the final set of 
configurations is the same; it still clearly shows the superiority of the VCASSCF 
oscillators optimisation, although the final wave function is obviously distributed 
on a larger number of configurations than the pure VCASSCF wave functions. 

In D20, the same behaviour is observed for the corresponding transition, with 
the same oddity at the VCASSCF(24) level. 

For the 010---, 012 transition the results are similar, although the 
VCASSCF(24) does not look like a particular case. However, the solution con- 
verges much slower to the FCI(500) value and larger CI expansions are to be used. 
The importance of highly excited bending oscillators appears clearly by comparing 
the different VCASSCF results; this is illustrated in Fig. 2, where the three 
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transition moments studied are plotted against the level of bending excitation 
taken into account. This plot clearly shows the crucial effect of stretch-bend 
interaction in such pure stretching transitions. The variation between the 
000 --* 002 and 010 ~ 012 transition moments is another indication that this 
coupling is important  and felt differently in the two states. 

This kind of information is crucial to people who want to interpret intensity 
features and understand, for instance, where does overtone intensity come from. It 
is moreover a basic data in the refinement of dipole moment functions starting 
from experimental infrared intensities; indeed, if the model used for this purpose 
does not include those stretch-bend coupling effects, the dipole moment  surface 
could get seriously biased. 

4 Conclusion 

The extension of the  VMCSCF algorithm to a VCASSCF version has proved 
interesting in two ways. First it makes the optimisation procedure much more 
efficient with the possibility of including a greater number of configurations in the 
MC expansion. Secondly it gives a different point of view in the interpretation of 
mode couplings; the discussion on the importance of particular configurations is 
replaced by a discussion on the effects of particular mode oscillators. The CASSCF 
approach provides a very neat definition of the level at which mode couplings are 
taken into account and allows to determine which vibrational motions are most 
relevant in the evaluation of a vibrational property. 

This latter advantage has been illustrated in the computation of two pure 
stretching transitions in H 2 0  and D20.  A complete methodological comparison 
has allowed to show the crucial importance of stretch-bend interactions for these 
particular transitions. 

Some improvements are still to be made in order to get a real quantitative ab 
initio determination of weak transition moments. However, as it is, the procedure 
can be used as a guide to experimental interpretation of spectroscopic data. In 
particular, the efforts presently made by several research groups (see for instance 
[25] ) to refine polyatomic potential surfaces could be completed by a refinement of 
ab initio dipole moment  surfaces to give a more complete description of infrared 
spectra. Work along this line [26] is under progress in our group. 
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